BIM and Project Controls: is BIM the solution to improving them?


Graeme Forbes, Managing Director, Clearbox examines if BIM is the solution to improving project controls… 

Project Controls is a mix of science and art that is used particularly in the process and infrastructure sectors as a standalone discipline to control what are often large and complex projects with the aim of bringing the project to a successful conclusion from the aspect of time, cost, and quality. The science is that there are recognised techniques to be applied to a project to measure the status and better predict the outcome. The art is that all the information is rarely in the right form to make all the necessary analyses, even when we distinguish between the symptoms and the causation. At the same time, the shape and form of the most pertinent form of measurement changes across the life-cycle of the project.

Typically projects (and the sub-projects within an overall programme) start and end with a critical sequence of tasks before running through a period of volume-based delivery before ending with a critical closeout sequence. To compound the lack of simplicity offered by a fixed set of rules (as opposed to an established set of principles), the information to base the judgement of status and recommendations for actions are affected by:

  • Ambiguity in the source information – invariably the full information is not available until the end of a project unlike manufacturing when it is available at the outset, so judgements, allowances, etc. have to be made, and these can often be found later to be in error;
  • There are often several sources of the truth in a large fast moving project and reconciling the analysis from the various sources can be time consuming and frustrating;
  • Information is fragmented, held in documents, schedules and drawings but the computation of key information such as a count of the number of doors to allow determination of how much the doors will cost or how many are currently fixed requires a detailed review and analysis of many drawings and associated information.  The reality is that the analysis often doesn’t get undertaken or may get undertaken many times by many parties. Such an example represents only a small part of the overall challenge of determining the full scope of the project at a project level or the scope of a sub-contract when one party supplies and another fixes and even a third may commission and handover;
  • An inability to see information in context.  A window is quite a different proposition to build when it is on the ground floor compared to being located on the 5th floor, on the east wing above an embankment overlooking the sea;
  • And of course, when the information is shown on drawings, even experienced personnel can interpret the information differently especially when they have limited time to view and reconcile.  With buildings, I always found the drainage and the roof lines were key to quickly understanding the form of a building, but I expect others have their own techniques.

So the challenges in project controls are immense. Applying the most appropriate technique that most accurately reflects the challenge of the project at the point in time, and then having to work around all the limitations and challenges by interpreting disparate sets of information to derive the right analysis and recommendation before being challenged by the essential optimism and hunger of the construction team to arrive at a balanced status. With margins often in the low percentage points of the overall cost, and each party to the contract having their own interpretation of the information to hand, it is hardly surprising that considerable time and effort, mistakes can, and often are made with the result that projects overrun in time and cost.

BIM, on the other hand, thrives on definition. When you model an object in BIM, you have to position it and size it and say what it is. So while designers prefer not to add items to a drawing until the item is defined and understood where it is going, cost planners and construction teams want to better understand what is required even if it needs further definition at a later date. So the foundation of BIM and its interaction with delivery relies on some key principles:

  • There is accuracy and definition in the content which by the very nature of the output being in 3D places many elements of the requirements in context;
  • There is the ideal of a managed process around a single model, while perhaps harder to achieve it should nevertheless be a core aspiration, invariably wrapped in an integrated CDE;
  • There is a managed process to define, add and enhance the object data to create an appropriate level of information and richness at every stage in the project leading to digital handover and operation;
  • When we manage 3D object information, we are able to enhance it with the attribution of time, work packaging, cost and asset coding, allow us to aggregate and analyse the information as well as simulate and visualise the outcomes in every which way we choose.

However while the foundation of BIM is strong, it is as an enabler that BIM presents the real opportunity to do new things that really accelerate BIM beyond its traditional space into that of Integrated Project Controls, for example;

  • Visual Simulation and understanding of program changes.  Being able to see the impacts of design changes on the program is traditionally quite difficult.  Firstly identifying changes can be time consuming and then finding the tasks affected in the program gantt chart can also be difficult.  When BIM is introduced with automated mapping between construction elements and tasks, the process becomes much quicker, easier and more visual with the ability to run scenarios across multiple program versions (e.g., baseline vs. current actual).  This yields significant benefits for the planner and allows the focus to be on value-adding work rather than handling fragmented, disconnected data;
  • Short-term programming and logistics planning. Projects are typically founded on structured strategic programmes with separate discrete local short-term programmes. The desire to better display the detailed sequences often results in the strategic programme becoming overly complex with the result that progress updates, risk analysis and other similar tasks themselves become overly burdensome. However, short-term programming within the model space is quite feasible under the umbrella of the strategic programme, and of course allows the richness of the information such as resources to be made available to provide greater assurance of the outcome. Short-term sequencing the permanent works and the temporary works, and even simulating material movements are all opportunities for BIM driven products and will undoubtedly expose issues, reduce risks and improve the communication amongst the project team;
  • Cost estimating and cost management. While a model doesn’t often reflect the complete scope early in the project, it does provide the scope from which other elements of content can invariably be attached. For example, a wall in the model might attract plaster, paint, skirting, builderswork restraint, acoustic treatment, etc. but these elements do not need to be detailed in the model. However, the size and number of each can be associated to the wall and made available to other users. Automated measurement and sophisticated association with external pricing and resource estimation allows objects to be resourced and priced, paving the way for association with the progress updates;
  • Risk Management can be better enabled allowing the discipline to be applied more readily to more projects. In common with resource levelling, the key time consuming task with risk management is the population of the programme with cost, association with the risk register and the subsequent set up ready for the analysis to take place. BIM will be able to facilitate and even automate much of this process allowing experienced users to concentrate on the outcome and the subsequent actions, rather than the non-value adding and time-consuming preparation of the necessary information;
  • Combine the measurement and costing with progress measurement in the model, given that each activity knows the components associated with it, and fast, accurate progress measurement can now contribute to the reconciliation of cost and value;
  • Change Management. Of course, if we can see what has changed and measured from the model we can also see and measure change with the appropriate time impact and opportunity to display potential disruption, so effective change management, essentially the measured appendix to the variation notice is a very real opportunity.

In conclusion, given the foundation and objectives of BIM, why wouldn’t project controls as a function not jump at the opportunity offered by BIM?  Is it that BIM is often still seen as the pictures or videos, or is it that very few businesses and software providers have aligned their thoughts and aspirations to the opportunity and the enablement of Project Controls through BIM?  What will come first, the production of this robust information to better enable project controls or the demand for more robust information and consistent processes to feed the opportunity for improved project controls?

While the reality is that leadership on the matter is invariably critical to make it happen and lead the change, certain software solutions are now focused on delivering the robust information to support the foundation for the more efficient and more effective production of project controls outputs.  The ultimate aim is to produce the outputs in real time as the exhaust gasses of the process, thereby allowing the project controls team to apply their art while making an experienced judgement based on current up todate information.  There can hardly be a Client or owner that won’t be keen to achieve this outcome.

Graeme Forbes

Managing Director


+44 (0) 800 085 9872

Please note: this is a commercial profile


Please enter your comment!
Please enter your name here