Concrete-like material developed from space dust and astronaut blood


Scientists at The University of Manchester have developed a concrete-like material made of space dust and the blood, sweat and tears of astronauts

In their study, published in Materials Today Bio, a protein from human blood, combined with a compound from urine, sweat or tears, could glue together simulated moon or Mars soil to produce a material stronger than ordinary concrete.

The cost of transporting a single brick to Mars has been estimated at around US$2m (~£1.45m), meaning future Martian colonists cannot bring their building materials with them, but will have to utilise resources they can obtain on-site for construction and shelter. This is known as in-situ resource utilisation and typically focuses on the use of loose rock and Martian soil and sparse water deposits.

However, there is one overlooked resource that will, by definition, also be available on any crewed mission to the Red Planet: the crew themselves.

Scientists demonstrated that a common protein from blood plasma – human serum albumin – could act as a binder for simulated moon or Mars dust to produce a concrete-like material.

The resulting novel material, termed AstroCrete, had compressive strengths as high as 25 MPa.

However, the scientists found that incorporating the biological waste product that the body produces and excretes through urine, sweat and tears could further increase the compressive strength by over 300%.

mars concrete

‘The answer might be inside us all along’

Dr Aled Roberts from The University of Manchester, said: “Scientists have been trying to develop viable technologies to produce concrete-like materials on the surface of Mars, but we never stopped to think that the answer might be inside us all along.”

The scientists calculate that over 500 kg of high-strength AstroCrete could be produced over the course of a two-year mission on the surface of Mars by a crew of six astronauts.

If used as a mortar for sandbags or heat-fused regolith bricks, each crew member could produce enough AstroCrete to expand the habitat to support an additional crew member, doubling the housing available with each successive mission.

“It is exciting that a major challenge of the space age may have found its solution based on inspirations from medieval technology”, said Dr Roberts.

The scientists investigated the underlying bonding mechanism and found that the blood proteins denature, or “curdle”, to form an extended structure with interactions known as “beta sheets” that tightly holds the material together.

“The concept is literally blood-curdling,” Dr Roberts explained.


Please enter your comment!
Please enter your name here